
The development of computationally efficient and validated single-track vehicle-rider models has traditionally required handcrafted one-off models. Here we introduce BRiM, a software package that facilitates building these models in a modular fashion while retaining access to the mathematical elements for handcrafted modeling when desired. We demonstrate the flexibility of the software by constructing the Carvallo-Whipple bicycle model with different numerical parameters representing different bicycles, modifying it with a front fork suspension travel model, and extending it with moving rider arms driven by joint torques at the elbows. Using these models we solve a lane-change optimal control problem for six different model variations which solve in mere seconds on a modern laptop. Our tool enables flexible and rapid modeling of single-track vehicle-rider models that give precise results at high computational efficiency.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
