Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Egyptian Informatics...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Egyptian Informatics Journal
Article . 2020 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Egyptian Informatics Journal
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Egyptian Informatics Journal
Article . 2020
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A robust clustering algorithm using spatial fuzzy C-means for brain MR images

Authors: Madallah Alruwaili; Muhammad Hameed Siddiqi; Muhammad Arshad Javed;

A robust clustering algorithm using spatial fuzzy C-means for brain MR images

Abstract

Magnetic Resonance Imaging (MRI) is a medical imaging modality that is commonly employed for the analysis of different diseases. However, these images come with several problems such as noise and other imaging artifacts added during acquisition process. The researchers have actual challenges for segmentation under the consideration of these effects. In medical images, a well-known clustering approach like Fuzzy C-Means widely used for segmentation. The performance of FCM algorithm is fast in noise-free images; however, this method did not consider the spatial context of the image due to which its performance suffers when images corrupted with noise and other imaging relics. In this paper, a weighted spatial Fuzzy C-Means (wsFCM) segmentation method is proposed that considered the spatial information of image. Moreover, a spatial function is also developed that integrate a membership function. In order assess this function, a neighborhood window is established around a pixel and more weights have been assigned to those pixels which have greater correlation with central pixel in local neighborhood. By integration of this spatial function in membership function, the modified membership function strengthens the original membership function in handling the noise and intensity inhomogeneity, which has the ability to preserves and maintains structural information like edges. A comprehensive set of experimentation is performed on publicly accessible simulated and real standard brain MRI datasets. The performance of the proposed method has been compared with existing state-of-the-art methods. The results show that the performance of the proposed method is better and robust in handling noise and intensity inhomogeneity than of the existing works. Keywords: Clustering algorithm, MRI, Fuzzy C-means

Keywords

Electronic computers. Computer science, QA75.5-76.95

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
gold