
handle: 11368/3004529
Image segmentation is a key issue in image processing. New image segmentation algorithms have been proposed in the last years. However, there is no optimal algorithm for every image processing task. The selection of the most suitable algorithm usually occurs by testing every possible algorithm or using knowledge from previous problems. These processes can have a high computational cost. Meta-learning has been successfully used in the machine learning research community for the recommendation of the most suitable machine learning algorithm for a new dataset. We believe that meta-learning can also be useful to select the most suitable image segmentation algorithm. This hypothesis is investigated in this paper. For such, we perform experiments with eight segmentation algorithms from two approaches using a segmentation benchmark of 300 images and 2100 augmented images. The experimental results showed that meta-learning can recommend the most suitable segmentation algorithm with more than 80% of accuracy for one group of algorithms and with 69% for the other group, overcoming the baselines used regarding recommendation and segmentation performance.
Image segmentation, Meta-learning, Meta-learning; Image segmentation; Gradient-based techniques; Algorithm recommendation, Algorithm recommendation, Gradient-based technique
Image segmentation, Meta-learning, Meta-learning; Image segmentation; Gradient-based techniques; Algorithm recommendation, Algorithm recommendation, Gradient-based technique
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 39 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
