Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ figsharearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Other literature type . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Other literature type . 2023
License: CC BY
Data sources: Datacite
Expert Review of Anti-infective Therapy
Article . 2023 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.60692/vk...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/91...
Other literature type . 2023
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Androgen receptor, a possible anti-infective therapy target and a potent immune respondent in SARS-CoV-2 spike binding: a computational approach

مستقبلات الأندروجين، هدف محتمل للعلاج المضاد للعدوى ومستجيب مناعي قوي في ربط سارس- كوف-2: نهج حسابي
Authors: Ashfaq Ahmad; Zhandaulet Makhmutova; Wenwen Cao; Sidra Majaz; Amr Amin; Yingqiu Xie;

Androgen receptor, a possible anti-infective therapy target and a potent immune respondent in SARS-CoV-2 spike binding: a computational approach

Abstract

Although androgen in gender disparity of COVID-19 has been implied, no direct link has been provided. Here, we applied AlphaFold multimer, network and single cells database analyses to highlight specificity of Androgen receptor (AR) against spike receptor binding protein (RBD) of SARS-CoV-2. LXXL motifs in spike RBD are essential for AR binding. RBD LXXA mutation complex with the AR depicting slightly reduced binding energy, as LXXLL motif usually mediates nuclear receptor binding to coregulators. Moreover, AR preferred to bind a LYRL motif in specificity and interaction interface, and showed reduced affinity against Omicron compared to other variants (alpha, beta, gamma, and delta). Importantly, RBD LYRL motif is a conserved antigenic epitope (9 residues) for T-cell response. Network analysis of AR-related genes against COVID-19 database showed T-cell signaling regulation, and CD8+ T-cell spatial location in AR+ single cells, which is consistent with the AR binding motif LYRL in epitope function. We provided the potent mechanisms of AR binding to RBD linking to immune response and vaccination shift. AR could be an anti-infective therapy target for anti-Omicron new lineages.

Keywords

Regulatory T Cell Development and Function, Cell biology, Immunology, Coronavirus Disease 2019 Research, FOS: Health sciences, Epitopes, Surveys and Questionnaires, antibody, Health Sciences, Genetics, Humans, Biology, Cancer, Immunology and Microbiology, Prostate cancer, SARS-CoV-2, FOS: Clinical medicine, COVID-19, Life Sciences, T cell, CD8, Androgen receptor, Infectious Diseases, Immune system, Receptors, Androgen, Antigen, FOS: Biological sciences, Medicine, Epitope, Protein Binding, Natural Killer Cells in Immunity, Receptor

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green