Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ فرایند مدیریت و توسع...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
فرایند مدیریت و توسعه
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluating Credit Risk Based on Combined Model of Neural Network of Pattern Recognition and Ants’ Colony Algorithm

Authors: Gholamreza Jandaghi; Alireza Saranj; Reza Rajaei; Ahmadreza Qhasemi; Reza Tehrani;

Evaluating Credit Risk Based on Combined Model of Neural Network of Pattern Recognition and Ants’ Colony Algorithm

Abstract

A great amount of potential financial losses arise from borrowers’ abstaining from refunding their debts calls and the development and improvement of credit risk measurement techniques in the financial literature in order to decrease such losses has transformed into an intevitable subject. The purpose of bankruptcy forecasting models is to estimate the probability of a company or a person’s abstaining during a certain period of time. This research used the data gathered from a sample of 218 active companies in Tehran Stock Exchange Market as well as Over-The-Counter for the period between 1990 and 2016. Moreover, ants’ colony algorithm was used to determine the most effective factors of credit risk and also pattern recognition neural network technique was applied to classify and evaluate the precision of bankruptcy forecasts. As a result, such ratios as profit before interests and taxes to total sale; total benefits of shareholders to debts; and current ratio, cash ratio and shareholders’ benefits ratio to total assets are the most effective factors. Finally, the presented model which employs data belonging to one, two and three years before the intended year is able to forecast the credit condition of companies with higher precision as compared to the average precision of current models.

Related Organizations
Keywords

pattern recognition algorithm, credit risk, neural network, HD72-88, bankruptcy probability, Economic growth, development, planning, Employee participation in management. Employee ownership. Industrial democracy. Works councils, ants’ colony aalgorithm., HD5650-5660

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities