
arXiv: 2505.24780
Quantum neural networks converge faster and achieve higher accuracy than classical models. However, data augmentation in quantum machine learning remains underexplored. To tackle data scarcity, we integrate quantum generative adversarial networks (QGANs) with hybrid quantum-classical neural networks (HQCNNs) to develop an augmentation framework. We propose two strategies: a general approach to enhance data processing and classification across HQCNNs, and a customized strategy that dynamically generates samples tailored to the HQCNN's performance on specific data categories, improving its ability to learn from complex datasets. Simulation experiments on the MNIST dataset demonstrate that QGAN outperforms traditional data augmentation methods and classical GANs. Compared to baseline DCGAN, QGAN achieves comparable performance with half the parameters, balancing efficiency and effectiveness. This suggests that QGANs can simplify models and generate high-quality data, enhancing HQCNN accuracy and performance. These findings pave the way for applying quantum data augmentation techniques in machine learning.
FOS: Computer and information sciences, Computer Science - Machine Learning, Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph), Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
