Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Optimizat...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Optimization Theory and Applications
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Majorization-Minimization Bregman Proximal Gradient Algorithms for NMF with the Kullback–Leibler Divergence

Authors: Shota Takahashi; Mirai Tanaka; Shiro Ikeda;

Majorization-Minimization Bregman Proximal Gradient Algorithms for NMF with the Kullback–Leibler Divergence

Abstract

Abstract Nonnegative matrix factorization (NMF) is a popular method in machine learning and signal processing to decompose a given nonnegative matrix into two nonnegative matrices. In this paper, we propose new algorithms, called majorization-minimization Bregman proximal gradient algorithm (MMBPG) and MMBPG with extrapolation (MMBPGe) to solve NMF. These iterative algorithms minimize the objective function and its potential function monotonically. Assuming the Kurdyka–Łojasiewicz property, we establish that a sequence generated by MMBPG(e) globally converges to a stationary point. We apply MMBPG and MMBPGe to the Kullback–Leibler (KL) divergence-based NMF. While most existing KL-based NMF methods update two blocks or each variable alternately, our algorithms update all variables simultaneously. MMBPG and MMBPGe for KL-based NMF are equipped with a separable Bregman distance that satisfies the smooth adaptable property and that makes its subproblem solvable in closed form. Using this fact, we guarantee that a sequence generated by MMBPG(e) globally converges to a Karush–Kuhn–Tucker (KKT) point of KL-based NMF. In numerical experiments, we compare proposed algorithms with existing algorithms on synthetic data and real-world data.

Keywords

90C26, 49M37, 15A23, Optimization and Control (math.OC), Optimization and Control, FOS: Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid