
arXiv: 2411.18172
Artificial Neural Networks excel at identifying individual components in an image. However, out-of-the-box, they do not manage to correctly integrate and interpret these components as a whole. One way to alleviate this weakness is to expand the network with explicit knowledge and a separate reasoning component. In this paper, we evaluate an approach to this end, applied to the solving of the popular board game Rummikub. We demonstrate that, for this particular example, the added background knowledge is equally valuable as two-thirds of the data set, and allows to bring down the training time to half the original time.
Submitted to ESANN2025
FOS: Computer and information sciences, Computer Science - Logic in Computer Science, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Logic in Computer Science (cs.LO)
FOS: Computer and information sciences, Computer Science - Logic in Computer Science, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Logic in Computer Science (cs.LO)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
