Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lanczos Approach to Molecular Spectroscopy without Explicit Calculation of Eigenfunctions

Lanczos approach to molecular spectroscopy without explicit calculation of eigenfunctions
Authors: Guo, Hua;

Lanczos Approach to Molecular Spectroscopy without Explicit Calculation of Eigenfunctions

Abstract

The Lanczos algorithm is a simple and accurate recursive scheme to determine eigenvalues of a large real-symmetric or Hermitian matrix. Because of its reliance on a three-term recursion relation based on matrix-vector multiplication, the Lanczos algorithm does not alter the Hamiltonian matrix and scales favorably with the dimension of the problem. It is, however, more difficult to obtain the corresponding eigenfunctions, particularly for large dimensional problems. In this review, we discuss several efficient Lanczos-based schemes to directly obtain useful scalar spectroscopic properties without explicitly calculating eigenfunctions.

Related Organizations
Keywords

Numerical computation of eigenvalues and eigenvectors of matrices, recursive diagonalization, eigenvalue problems, Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.), Hamiltonian matrix, eigenfunctions, Hermitian matrix, molecular spectroscopy, Numerical approximation of eigenvalues and of other parts of the spectrum of ordinary differential operators, Lanczos algorithm, Molecular physics, Numerical solution of eigenvalue problems involving ordinary differential equations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!