
doi: 10.53070/bbd.1173588
Decomposition is a method to distributes a mutliobjective problems to the many single objective problems like scalarization. Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D) is one of the many algorithms uses decomposition method. In MOEA/D algorithm genetic operators are preferred to alter the population. As one of the genetic operators, the crossover is an important element in the algorithm. Hence it is possible to propose new possible methods instead of well-known SBX method. Differential Evolution (DE) which is a single objective optimization algorithm can be used as crossover operator in MOEA/D. However, in DE the best member needed to be detected in the population. Even it is relatively easy in single objective, systematic methods are needed for this purpose. Therefore, in this research three different best member detection methodology will be compared in DE assist MOEA/D algorithm. These methods will be compared on benchmark problems with many objectives.
MOEA/D;decomposition;multiobjective optimization;crossover., Yapay Zeka, Artificial Intelligence
MOEA/D;decomposition;multiobjective optimization;crossover., Yapay Zeka, Artificial Intelligence
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
