
handle: 10281/151349
Within the field of computer vision, change detection algorithms aim at automatically detecting significant changes occurring in a scene by analyzing the sequence of frames in a video stream. In this paper we investigate how state-of-the-art change detection algorithms can be combined and used to create a more robust algorithm leveraging their individual peculiarities. We exploited genetic programming (GP) to automatically select the best algorithms, combine them in different ways, and perform the most suitable post-processing operations on the outputs of the algorithms. In particular, algorithms’ combination and post-processing operations are achieved with unary, binary and ${n}$ -ary functions embedded into the GP framework. Using different experimental settings for combining existing algorithms we obtained different GP solutions that we termed In Unity There Is Strength . These solutions are then compared against state-of-the-art change detection algorithms on the video sequences and ground truth annotations of the ChangeDetection.net 2014 challenge. Results demonstrate that using GP, our solutions are able to outperform all the considered single state-of-the-art change detection algorithms, as well as other combination strategies. The performance of our algorithm are significantly different from those of the other state-of-the-art algorithms. This fact is supported by the statistical significance analysis conducted with the Friedman test and Wilcoxon rank sum post-hoc tests.
Change detection algorithms, Detection algorithms, Algorithm design and analysis, Robustness, Evolutionary computation, Streaming media, Genetic programming, Algorithm combining; Change detection; ChangeDetection.net (CDNET); Genetic programming (GP); Selection;
Change detection algorithms, Detection algorithms, Algorithm design and analysis, Robustness, Evolutionary computation, Streaming media, Genetic programming, Algorithm combining; Change detection; ChangeDetection.net (CDNET); Genetic programming (GP); Selection;
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 129 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
