
Abstract Both parametric and parameter-free stationary-point-type and saddle-point-type necessary and sufficient optimality conditions are established for a class of nonsmooth continuous-time generalized fractional programming problems with Volterra-type integral inequality and nonnegativity constraints. These optimality criteria are then utilized for constructing ten parametric and parameter-free Wolfe-type and Lagrangian-type dual problems and for proving weak, strong, and strict converse duality theorems. Furthermore, it is briefly pointed out how similar optimality and duality results can be obtained for two important special cases of the main problem containing arbitrary norms and square roots of positive semidefinite quadratic forms. All the results developed here are also applicable to continuous-time programming problems with fractional, discrete max, and conventional objective functions, which are special cases of the main problem studied in this paper.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
