Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della Ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/wowmom...
Article . 2009 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-constrained path computation algorithms for Traffic Engineering over Wireless Mesh Networks

Authors: Davide Adami; Rosario Giuseppe Garroppo; Stefano Giordano; Luca Tavanti;

Multi-constrained path computation algorithms for Traffic Engineering over Wireless Mesh Networks

Abstract

We propose a Traffic Engineering (TE) architecture to supply Wireless Mesh Networks (WMNs) with an efficient support of diverse applications with different Quality of Service (QoS) requirements. The proposed TE-WMN architecture is based on the MPLS technology. Its main goal is to provide TE capabilities so that a heterogeneous infrastructure, made of wired networks and WMNs, can be built and managed in a seamless manner. In the TE-WMN architecture, the Path Computation Element (PCE) is in charge of finding a path that satisfies the QoS requirements. This operation often requires solving a multi-constrained problem, which is known to be NP-complete. So far many approximated and heuristic solutions have been developed for and applied to wired networks. However, the different features of WMNs make it impractical to reuse those solutions. Hence we have devised two heuristic path computation algorithms (PCAs) with the goal of keeping the complexity very low and yet improving the performance of simple existing algorithms. An extensive set of tests has proved the good performance of the proposed PCAs.

Country
Italy
Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!