Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Advanced Materials R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advanced Materials Research
Article . 2012 . Peer-reviewed
License: Trans Tech Publications Copyright and Content Usage Policy
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Neural Network Model for the Fe/SiO<sub>2</sub> Ratio in Copper Flash Smelting Slag Using Improved Back Propagation Algorithm

Authors: Hong Lu;

An Neural Network Model for the Fe/SiO<sub>2</sub> Ratio in Copper Flash Smelting Slag Using Improved Back Propagation Algorithm

Abstract

The Fe/SiO2 ratio in slag is one of the important control parameters for copper flash smelting process, but it is difficult to describe the complex relationship between the technological parameters and the Fe/SiO2 ratio in slag using accurate mathematic formulae, because the copper flash smelting process is a complicated nonlinear system. An neural network model for the Fe/SiO2 ratio in copper flash smelting slag was developed, whose net structure is 8-15-12-1, and input nodes include the oxygen volume per ton concentrate, the oxygen grade, the flux rate, the quantity of Cu, S, Fe, SiO2 and MgO in concentrate. In order to avoid local minimum terminations when the model is trained by back propagation (BP) algorithm, a new algorithm called GA-BP is presented by using genetic algorithm (GA) to determine the initial weights and threshold values. The results show that the model can avoid local minimum terminations and accelerate convergence, and has high prediction precision and good generalization performance. The model can be used to optimize the copper flash smelting process control.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!