
High Performance Fortran (HPF) has emerged as a standard language fordata parallel computing. However, a wide variety of scientific applications are best programmed by a combination of task and data parallelism. Therefore, a good model of task parallelism is important for continued success of HPF for parallel programming. This paper presents a task parallelism model that is simple, elegant, and relatively easy to implement in an HPF environment. Task parallelism is exploited by mechanisms for dividing processors into subgroups and mapping computations and data onto processor subgroups. This model of task parallelism has been implemented in the Fx compiler at Carnegie Mellon University. The paper addresses the main issues in compiling integrated task and data parallel programs and reports on the use of this model for programming various flat and nested task structures. Performance results are presented for a set of programs spanning signal processing, image processing, computer vision and environment modeling. A variant of this task model is a new approved extension of HPF and this paper offers insight into the power of expression and ease of implementation of this extension.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 36 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
