Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Communications
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Blind Channel Estimation and Data Detection With Unknown Modulation and Coding Scheme

Authors: Yu Liu; Fanggang Wang;

Blind Channel Estimation and Data Detection With Unknown Modulation and Coding Scheme

Abstract

This paper investigates a complete blind receiver approach in an unknown multipath fading channel, which has multiple tasks including blind channel estimation, noise power estimation, modulation classification, channel coding recognition, and data detection. Each of these tasks has been sufficiently studied in the literature. However, to the best of our knowledge, this overall problem has not been investigated previously. This paper is the first attempt to address this overall problem jointly. We propose a complete blind receiver approach that jointly estimates the unknown channel state information and noise power, recognizes the unknown modulation and coding scheme, detects the data of interest, and thus named BERD receiver. Another merit of the proposed BERD receiver is that it can be implemented for both a single receiver and multiple receivers, which ensures successful estimation, recognition, and detection for such an extremely difficult problem. In addition, numerical results show the performance of the proposed receiver in three folds: a) the BERD receiver outperforms the linear minimum mean squared error (LMMSE) pilot-based channel estimator by over 3.5 dB at the MSE of 0.01; b) the correct modulation/coding recognition performance of the BERD receiver is within 0.3 dB as close to the recognition benchmark when the perfect channel state information (CSI) is available; c) the BERD receiver is within 0.5 dB at the bit error rate of 0.001 compared to the benchmark when the modulation, the channel coding, and the CSI are perfectly known. Finally, the BERD receiver finds many applications in both civilian and military scenarios, such as the interference cancelation in spectrum sharing, real-time signal interception, and processing in electronic warfare operations, automatic recognition of a detect signal in software-defined radio.

45 pages, 12 figures

Related Organizations
Keywords

Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Top 10%
Average
Green