
We present a quantum-in-quantum embedding strategy coupled to machine learning potentials to improve on the accuracy of quantum-classical hybrid models for the description of large molecules. In such hybrid models, relevant structural regions (such as those around reaction centers or pockets for binding of host molecules) can be described by a quantum model that is then embedded into a classical molecular-mechanics environment. However, this quantum region may become so large that only approximate electronic structure models are applicable. To then restore accuracy in the quantum description, we here introduce the concept of quantum cores within the quantum region that are amenable to accurate electronic structure models due to their limited size. Huzinaga-type projection-based embedding, for example, can deliver accurate electronic energies obtained with advanced electronic structure methods. The resulting total electronic energies are then fed into a transfer learning approach that efficiently exploits the higher-accuracy data to improve on a machine learning potential obtained for the original quantum-classical hybrid approach. We explore the potential of this approach in the context of a well-studied protein-ligand complex for which we calculate the free energy of binding using alchemical free energy and non-equilibrium switching simulations.
28 pages, 7 figures
Chemical Physics (physics.chem-ph), Computational Physics, Chemical Physics, Biological Physics, Biological Physics (physics.bio-ph), FOS: Physical sciences, Disordered Systems and Neural Networks (cond-mat.dis-nn), Disordered Systems and Neural Networks, Computational Physics (physics.comp-ph), Article
Chemical Physics (physics.chem-ph), Computational Physics, Chemical Physics, Biological Physics, Biological Physics (physics.bio-ph), FOS: Physical sciences, Disordered Systems and Neural Networks (cond-mat.dis-nn), Disordered Systems and Neural Networks, Computational Physics (physics.comp-ph), Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
