Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Galway...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
European Journal of Soil Science
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
https://dx.doi.org/10.13025/30...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimization of Protein Quantification From Soil Samples

Authors: M. Waibel; M. Tuohy; E. Paterson; B. Thornton; F. Brennan; F. Abram;

Optimization of Protein Quantification From Soil Samples

Abstract

ABSTRACT Protein profiling of soil samples has the potential to enhance our understanding of soil ecosystems and guide the development of sustainable soil management practices. In that context, there is a need to develop robust proteomic workflows, starting with reliable protein quantification. Total protein quantification with the Lowry assay is a relatively easy, rapid, and cheap method, but requires interference corrections due to reactivity with a wide range of compounds that occur in soil, plant, and other biological matrices. Here, we propose sample‐specific corrections for soil protein extracts. We benchmarked our approach against other protein quantification methods, including other Lowry corrections, total hydrolysable amino acids, and Qubit total protein assay. Our sample‐specific Lowry corrections did not overestimate or underestimate protein content when compared to the other methods tested. As a practical contribution, this work provides a calibration method for the Lowry assay using protein reference values in a multivariate regression approach to enable simple and high‐throughput total protein quantification of soil samples.

Country
Ireland
Keywords

total hydrolysable amino acids, interfering substances, protein quantification, Lowry assay, qubit protein assay, soil

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid