Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Електротехніка і Еле...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Електротехніка і Електромеханіка
Article . 2025 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Maximum power point tracking improving of photovoltaic systems based on hybrid triangulation topology aggregation optimizer and incremental conductance algorithm

Authors: A. Jeridi; M. H. Moulahi; H. Khaterchi; A. Zaafouri;

Maximum power point tracking improving of photovoltaic systems based on hybrid triangulation topology aggregation optimizer and incremental conductance algorithm

Abstract

Introduction. Maximum power point tracking (MPPT) in photovoltaic (PV) systems has been a key research focus in recent years. While numerous techniques have been proposed to optimize power extraction, each suffers from inherent limitations that hinder their effectiveness. Problem. Environmental factors such as shading, partial shading, and low irradiance levels significantly impact PV system performance, with partial shading being the most critical and complex challenge due to its creation of multiple local power maxima. Goal. This study aims to improve MPPT in PV systems under partial shading conditions by developing a hybrid approach that integrates a Triangulation Topology Aggregation Optimizer (TTAO) with the Incremental Conductance (IC) algorithm. Methodology. Simulations were conducted in MATLAB/Simulink under four static partial shading scenarios, comparing the hybrid TTAO-IC algorithm against traditional methods like Perturb and Observe (P&O), IC and metaheuristic algorithms. Scientific novelty of this work lies in the hybrid TTAO-IC algorithm, which combines the global optimization strength of TTAO with the precision of IC, addressing the shortcomings of conventional methods. Practical value. The results show that the hybrid TTAO-IC algorithm achieves tracking efficiencies exceeding 99 %, outperforming existing methods and demonstrating robust adaptability to varying environmental conditions. References 31, tables 5, figures 15.

Keywords

solar photovoltaic system, triangulation topology aggregation optimizer, оптимізатор агрегації топології тріангуляції, глобальна точка максимальної потужності, умови часткового затінення, global maximum power point, сонячна фотоелектрична система, partial shading conditions, відстеження точки максимальної потужності, maximum power point tracking

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average