
doi: 10.1049/ipr2.12911
Abstract Brain tumour diagnosis is significant for both physicians and patients, but the low contrast and the artefacts of MRI glioma images always affect the diagnostic accuracy. The existing mainstream image enhancement methods are insufficient in improving contrast and suppressing artefacts simultaneously. To enrich the field of glioma image enhancement, this research proposed a glioma image enhancement method based on histogram modification and total variational using stochastic parallel gradient descent (SPGD) algorithm. Firstly, this method modifies the cumulative distribution function on the image histogram and performs gamma correction on the image according to the modified histogram to obtain a contrast‐enhanced image. Then, the method suppresses the artefacts of glioma images by total variational and wavelet denoising algorithm. To get better enhancement images, the optimal parameters in the proposed method are searched by the SPGD algorithm. The statistical studies performed on 580 real glioma images demonstrate that the authors’ approach can outperform the existing mainstream image enhancement methods. The results show that the proposed method increases the discrete entropy of the image by 8.9% and the contrast by 2.8% compared to original images. The enhanced images are produced by the proposed method with a natural appearance, appealing contrast, less degradation, and reasonable detail preservation.
histogram modification, contrast improvement, image denoising, parallel algorithms, QA76.75-76.765, Photography, artefacts suppression, image enhancement, Computer software, TR1-1050
histogram modification, contrast improvement, image denoising, parallel algorithms, QA76.75-76.765, Photography, artefacts suppression, image enhancement, Computer software, TR1-1050
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
