
In this paper, we present for the first time an approach for hardware accelerated displacement mapping. The displaced surface is generated from a 2D displacement map by remeshing a coarse triangle mesh according to the screen projection of the surface. The remeshing algorithm is implemented in hardware. Filtered access to the displacement map makes our approach competitive with available view dependent multiresolution techniques. The advantage of displacement mapping is the compact representation. A displacement mapped surface consumes together with all filter levels only a fraction of the storage space needed for a hardware compatible representation of an equivalent triangle mesh. A possible design of the displacement mapping rendering pipeline is proposed. Previously described hardware components are used as often as possible. Our approach can be smoothly integrated into all available graphics application programming interfaces. Most existing graphics applications can be extended to the new feature with marginal effort. CR Categories: I.3.1 [Computer Graphics]: Hardware Architecture—Raster display devices I.3.3 [Computer Graphics]: Picture/Image Generation—Bitmap and framebuffer operations, Display algorithms, Viewing algorithms I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve, surface, solid, and object representations I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Color, shading, shadowing, and texture
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
