Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Haptics
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Object Recognition Using Shape and Texture Tactile Information: A Fusion Network Based on Data Augmentation and Attention Mechanism

Authors: Bin Wang; Baojiang Li; Liang Li; Zhekai Zhang; Shengjie Qiu; Haiyan Wang; Xichao Wang;

Object Recognition Using Shape and Texture Tactile Information: A Fusion Network Based on Data Augmentation and Attention Mechanism

Abstract

Currently, most tactile-based object recognition algorithms focus on single shape or texture recognition. However, these single attribute-based recognition methods perform poorly when dealing with objects with similar shape or texture characteristics. Research on integrating shape and texture attributes is still limited, and existing feature fusion mechanisms tend to rely on simple connectivity while ignoring the interactions between different features. To address this issue, we propose a novel attention-based fusion network, TSMFormer, which classifies by integrating shape and texture information and harnesses the global learning capabilities of attention mechanisms to explore interactions between shape and texture in tactile images. Considering the advantages of Transformer networks in handling large datasets, we expanded the existing tactile image dataset through data augmentation. Extensive comparative experiments on this dataset show that the accuracy of the network combining texture and shape information is significantly improved to 99.3%. Comparisons with existing fusion methods further validate the effectiveness of our proposed attention fusion mechanism. The results demonstrate that TSMFormer is highly valuable for research, as it fuses texture and shape information in tactile images through an attention mechanism. Additionally, it shows great potential for practical applications such as robot grasping and automatic quality inspection in industrial environments.

Related Organizations
Keywords

Touch Perception, Touch, Image Processing, Computer-Assisted, Humans, Attention, Neural Networks, Computer, Algorithms, Pattern Recognition, Automated

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!