Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Математичні Студіїarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Математичні Студії
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2024
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A note on n-Jordan homomorphisms

A note on \(n\)-Jordan homomorphisms
Authors: M. El Azhari;

A note on n-Jordan homomorphisms

Abstract

{Let $ A, B $ be two rings and $ n\geqslant 2 $ be an integer. An additive map $ h\colon A\rightarrow B $ is called an $n$-Jordan homomorphism if $ h(x^{n})=h(x)^{n} $ for all $ x\in A;$ $h$ is called an n-homomorphism or an anti-$n$-homomorphism if $ h(\prod_{i=1}^{n}x_{i})=\prod_{i=1}^{n} h(x_{i})$ or $ h(\prod_{i=1}^{n}x_{i})=\prod_{i=0}^{n-1} h(x_{n-i}), $ respectively, for all $ x_{1},...,x_{n}\in A. $} {We give the following variation of a theorem on n-Jordan homomorphisms due to I.N. Herstein: Let $n\geq 2$ be an integer and $h$ be an $n-$Jordan homomorphism from a ring $A$ into a ring $B$ of characteristic greater than $n$. Suppose further that $A$ has a unit $e$, then $h = h(e)\tau$, where $h(e)$ is in the centralizer of $h(A)$ and $\tau$ is a Jordan homomorphism.} {By using this variation, we deduce the following result of G. An: Let $A$ and $B$be two rings, where $A$ has a unit and $B$ is of characteristic greater than an integer $n \geq 2$. If every Jordan homomorphism from $A$ into $B$ is a homomorphism (anti-homomorphism), then every $n-$Jordan homomorphism from $A$ into $B$ is an $n$-homomorphism (anti-$n$-homomorphism).As a consequence of an appropriate lemma, we also obtain the following resultof E. Gselmann: Let $A, B$ be two commutative rings and $B$ is of characteristic greater than an integer $n\geq 2$. Then every $n$-Jordan homomorphism from $A$ into$B$ is an $n-$homomorphism.}

Keywords

General theory of commutative topological algebras, homomorphism, n-jordan homomorphism, \(n\)-Jordan homomorphism, QA1-939, Rings with involution; Lie, Jordan and other nonassociative structures, n-homomorphism, Jordan homomorphism, jordan homomorphism, Mathematics, \(n\)-homomorphism

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold