
doi: 10.18046/eui/bda.h.4
En la práctica es común encontrarse con científicos de datos que emplean el modelo de regresión múltiple para resolver preguntas de negocio. Si bien es popular ese uso, es poco frecuente observar en la práctica el chequeo de todos los supuestos que están detrás de este modelo y que hacen que éste pueda generar respuestas adecuadas. El objetivo de este libro es presentar el modelo estadístico clásico de regresión múltiple con toda la formalidad posible a los científicos de datos. Para lograr este objetivo se presenta una mezcla entre los fundamentos (estadísticos y de álgebra lineal) teóricos del modelo y cómo llevarlo a la práctica empleando R.
Analítica, thema EDItEUR::U Computing and Information Technology::UN Databases::UNH Information retrieval, Big Data Analytics, Lenguaje estadístico, R, Modelo de Regresión, Econometría, Regresiones
Analítica, thema EDItEUR::U Computing and Information Technology::UN Databases::UNH Information retrieval, Big Data Analytics, Lenguaje estadístico, R, Modelo de Regresión, Econometría, Regresiones
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
