
doi: 10.1109/tmc.2012.81
The problem of developing distributed scheduling algorithms for high throughput in multihop wireless networks has been extensively studied in recent years. The design of a distributed low-complexity scheduling algorithm becomes even more challenging when taking into account a physical interference model, which requires the SINR at a receiver to be checked when making scheduling decisions. To do so, we need to check whether a transmission failure is caused by interference due to simultaneous transmissions from distant nodes. In this paper, we propose a scheduling algorithm under a physical interference model, which is amenable to distributed implementation with 802.11 CSMA technologies. The proposed scheduling algorithm is shown to achieve throughput optimality. We present two variations of the algorithm to enhance the delay performance and to reduce the control overhead, respectively, while retaining throughput optimality.
Distributed scheduling algorithms, Discrete time Markov chains, Multihop wireless network, Physical interference models, Wireless scheduling, Distributed implementation, Simultaneous transmission, SINR
Distributed scheduling algorithms, Discrete time Markov chains, Multihop wireless network, Physical interference models, Wireless scheduling, Distributed implementation, Simultaneous transmission, SINR
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
