Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stochastic Bigger Subspace Algorithms for Nonconvex Stochastic Optimization

Authors: Gonglin Yuan; Yingjie Zhou 0002; Liping Wang; Qingyuan Yang;

Stochastic Bigger Subspace Algorithms for Nonconvex Stochastic Optimization

Abstract

It is well known that the stochastic optimization problem can be regarded as one of the most hard problems since, in most of the cases, the values of $f$ and its gradient are often not easily to be solved, or the $F(\cdot, \xi)$ is normally not given clearly and (or) the distribution function $P$ is equivocal. Then an effective optimization algorithm is successfully designed and used to solve this problem that is an interesting work. This paper designs stochastic bigger subspace algorithms for solving nonconvex stochastic optimization problems. A general framework for such algorithm is presented for convergence analysis, where the so-called the sufficient descent property, the trust region feature, and the global convergence of the stationary points are proved under the suitable conditions. In the worst-case, we will turn out that the complexity is competitive under a given accuracy parameter. We will proved that the $SFO$ -calls complexity of the presented algorithm with diminishing steplength is $O\left({\epsilon ^{-{\frac {1}{1-\beta }}}}\right)$ and the $SFO$ -calls complexity of the given algorithm with random constant steplength is $O(\epsilon ^{-2})$ respectively, where $\beta \in (0.5,1)$ and $\epsilon $ is accuracy and the needed conditions are weaker than the quasi-Newton methods and the normal conjugate gradient algorithms. The detail algorithm framework with variance reduction is also proposed for experiments and the nonconvex binary classification problem is done to demonstrate the performance of the given algorithm.

Related Organizations
Keywords

machine learning, Stochastic subspace algorithm, convergence property, nonconvex function, Electrical engineering. Electronics. Nuclear engineering, complexity analysis, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold