Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy & Fuels
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mechanochemically Engineered CaO–CeO2 Dual-Function Catalysts for Sustainable Glycerol Carbonate Production without Solvents

Authors: Patcharaporn Inrirai; Runzhe Yu; Daniel Goma Jiménez; Nancy Artioli; Haresh Manyar;

Mechanochemically Engineered CaO–CeO2 Dual-Function Catalysts for Sustainable Glycerol Carbonate Production without Solvents

Abstract

Upgrading biorefinery-derived waste such as glycerol to fuel-additives and high-value products is essential to further enhance the productivity, profitability, and circularity of the biorefinery concept to achieve a green and sustainable net-zero world. This study explores the catalytic conversion of glycerol into glycerol carbonate using calcium oxide–cerium oxide (CaO–CeO(2)) dual-function catalytic materials. Herein, a clean and efficient approach was developed to synthesize CaO–CeO(2) materials using a green mechanochemical method and then utilize these as catalyst in sustainable and solvent-free synthesis of glycerol carbonate to enhance the circular economy of biorefineries while reducing their carbon footprint. The catalysts were comprehensively characterized using XRD, FTIR, ICP, N(2) sorption, CO(2)-TPD, and SEM/EDS analyses and evaluated for their catalytic activity. Among the catalysts studied, 40 wt % CaO–CeO(2) exhibited the highest catalytic activity, achieving 95% glycerol conversion and 99% selectivity to glycerol carbonate under optimized conditions (10 wt % catalyst loading relative to glycerol, 90 °C, 60 min, and a glycerol/ DMC molar ratio of 1:3). This catalyst showed excellent reusability, maintaining high conversion over four cycles. The transesterification reaction followed irreversible second-order reaction kinetics with an activation energy of 46.9 kJ mol(–1). The synergistic interplay between the basic sites of the Ca(2+)–O(2–) pair and the oxygen vacancies in the CeO(2) matrix at the CaO–CeO(2) interface work in tandem to enhance the catalytic activity for glycerol carbonate production. We have developed a highly efficient, cost-effective, and environment-friendly approach for the sustainable production of glycerol carbonate from glycerol.

Related Organizations
Keywords

glycerol carbonate, solvents, /dk/atira/pure/subjectarea/asjc/1500/1500; name=General Chemical Engineering, /dk/atira/pure/subjectarea/asjc/2100/2103; name=Fuel Technology, /dk/atira/pure/sustainabledevelopmentgoals/responsible_consumption_and_production; name=SDG 12 - Responsible Consumption and Production, catalysts, /dk/atira/pure/sustainabledevelopmentgoals/decent_work_and_economic_growth; name=SDG 8 - Decent Work and Economic Growth, Article, /dk/atira/pure/subjectarea/asjc/2100/2102; name=Energy Engineering and Power Technology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid