Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Alexandria Engineeri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Alexandria Engineering Journal
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Alexandria Engineering Journal
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Artificial neural network algorithm for time dependent radiative Casson fluid flow with couple stresses through a microchannel

Authors: Pradeep Kumar; Felicita Almeida; Qasem Al-Mdallal;

Artificial neural network algorithm for time dependent radiative Casson fluid flow with couple stresses through a microchannel

Abstract

Artificial neural network due to its versatile applications is used in various domains. It helps in analysing large datasets which might be difficult to accomplish by conventional models. They help in modelling and analysing complex fluid flow problems and when properly trained they help in predicting the flow structures. Thus, this study focuses on constructing an artificial neural network design to solve mathematical problem of Casson fluid flow in the presence of non-linear radiation and a magnetic field. The study focuses on the flow that changes with time in a microchannel, resulting in partial differential equations that are computed with the help of finite difference approach. The occurrence of irreversibility in the medium is analysed in relation to the flow, and a neural network model is developed. The numerical results indicate that the irreversibility produced in the medium increases as the radiation parameter and temperature difference parameter increase. The mean squared error values achieved for all the scenarios fall within the range of e−12 to e−8, indicating the successful interpretation of the neural network model constructed in tight correlation with the target data. Gradient descent was performed within the range of e−8, and the error histograms have the lowest values within the range of e−8 to e−6. The regression analysis and plotfit demonstrate a high degree of concordance between the data points for training, testing, and validation, with an approximate correlation coefficient ≈1. An investigation of absolute error conducted for various parameters reveals that the errors fall within the range of 10−4 to 10−5.

Keywords

Artificial Neural Network, Microchannel, Non-linear radiation, Couple stress fluid, TA1-2040, Engineering (General). Civil engineering (General), Casson fluid

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
gold