Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Intelligent Tran...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Intelligent Transport Systems
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Intelligent Transport Systems
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Risk‐based maximum speed advisory system for driving safety of connected and automated bus

Authors: Sehyun Tak; Sari Kim; Donghoun Lee;

Risk‐based maximum speed advisory system for driving safety of connected and automated bus

Abstract

Abstract Bus rapid transit (BRT) system is a cost‐effective way to provide public transportation service. However, it faces some challenges such as reduced labour productivity and increasing fuel costs. One solution is introducing automated vehicles (AV) to reduce operational expenses. However, there are still limitations on completely replacing human drivers even in limited operational design domains (ODD). Furthermore, AVs often suffer from poor driving stability in some roadways, such as abrupt changes in road geometry. To enhance the driving safety of AV‐based BRT services, this study develops a new connected and automated bus (CAB) system using a cloud‐based traffic management centre with cooperative intelligent transportation systems. The proposed system introduces risk‐based maximum speed advisory system (RMSAS), which controls the maximum advisory speed of CAB to reduce its driving risk. This research evaluates the performance of RMSAS by comparing it to other driving modes, such as human‐driven vehicles and conventional AVs, based on real‐world field operational tests. The result shows that the proposed system outperforms other driving modes in terms of driving risks, particularly in some road geometry‐related ODDs. Hence, this research concludes that the proposed system can be applied to the AV‐based BRT service for uprating its safety performance.

Related Organizations
Keywords

public transport, Transportation engineering, velocity control, TA1001-1280, automated driving and intelligent vehicles, risk analysis, Electronic computers. Computer science, traffic management and control, QA75.5-76.95, road safety

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold