
Abstract In this paper, an online joint state estimation and unknown inputs (UIs) identification approach for industrial processes represented by the state-space model is proposed. The UIs identification is achieved by applying the recursive expectation-maximization (REM) technique. In E-step, a recursively calculated Q-function is derived based on the maximum likelihood framework, and the Kalman filter (KF) is adopted to estimate the states. In M-step, analytical solutions for UIs are obtained via locally maximizing the recursive Q-function. A numerical example of a quadrupled water tank process and practice application to system modeling of a distillation tower are employed to illustrate the proposed REM-KF algorithm's effectiveness. It is also demonstrated that the REM-KF algorithm is more accurate than existing online solutions.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
