
Abstract Objectives Image file fragment classification is a critical area of study in digital forensics. However, many publicly available datasets in this field are derived from a single source, often lacking consideration of the diversity in image settings and content. To demonstrate the effectiveness of a given methodology, it is essential to evaluate it using datasets that are sampled from varied data sources. Therefore, providing a sufficiently diverse dataset is crucial to enable a realistic assessment of any proposed method. Data description The dataset includes image file fragments of 4096 bytes from five formats (JPG, BMP, GIF, PNG, and TIFF), each processed with different conversion settings. The source images are categorized into three content types: Nature, People, and Medical. In total, the dataset contains 501,000 fragments. These fragments consist of file headers and incomplete end-of-file fragments, completed with random bytes to approximate how operating systems handle data when file sizes are not multiples of the sector size. This approach aims to simulate typical scenarios where fragments are recovered from a hard drive, though it may not capture all real-world complexities such as data corruption and complex file structures.
Science (General), Databases, Factual, QH301-705.5, Forensic Sciences, Image file fragment, R, Datasets as Topic, Data Note, File type identification, Q1-390, File fragment classification, Image Processing, Computer-Assisted, Medicine, Humans, Biology (General), Dataset
Science (General), Databases, Factual, QH301-705.5, Forensic Sciences, Image file fragment, R, Datasets as Topic, Data Note, File type identification, Q1-390, File fragment classification, Image Processing, Computer-Assisted, Medicine, Humans, Biology (General), Dataset
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
