Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Communications in Mathematical Physics
Article . 2024 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2024
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

Parisi Formula for Balanced Potts Spin Glass

Parisi formula for balanced Potts spin glass
Authors: Erik Bates; Youngtak Sohn;

Parisi Formula for Balanced Potts Spin Glass

Abstract

The Potts spin glass is a generalization of the Sherrington--Kirkpatrick (SK) model that allows for spins to take more than two values. Based on a novel synchronization mechanism, Panchenko (2018) showed that the limiting free energy is given by a Parisi-type variational formula. The functional order parameter in this formula is a probability measure on a monotone path in the space of positive-semidefinite matrices. By comparison, the order parameter for the SK model is much simpler: a probability measure on the unit interval. Nevertheless, a longstanding prediction by Elderfield and Sherrington (1983) is that the order parameter for the Potts spin glass can be reduced to that of the SK model. We prove this prediction for the balanced Potts spin glass, where the model is constrained so that the fraction of spins taking each value is asymptotically the same. It is generally believed that the limiting free energy of the balanced model is the same as that of the unconstrained model, in which case our results reduce the functional order parameter of Panchenko's variational formula to probability measures on the unit interval. The intuitive reason -- for both this belief and the Elderfield--Sherrington prediction -- is that no spin value is a priori preferred over another, and the order parameter should reflect this inherent symmetry. This paper rigorously demonstrates how symmetry, when combined with synchronization, acts as the desired reduction mechanism. Our proof requires that we introduce a generalized Potts spin glass model with mixed higher-order interactions, which is interesting it its own right. We prove that the Parisi formula for this model is differentiable with respect to inverse temperatures. This is a key ingredient for guaranteeing the Ghirlanda--Guerra identities without perturbation, which then allow us to exploit symmetry and synchronization simultaneously.

62 pages

Related Organizations
Keywords

Equilibrium statistical mechanics, Special processes, Probability (math.PR), FOS: Mathematics, FOS: Physical sciences, Applications of statistical mechanics to specific types of physical systems, Disordered Systems and Neural Networks (cond-mat.dis-nn), Mathematical Physics (math-ph), Condensed Matter - Disordered Systems and Neural Networks, Mathematics - Probability, Mathematical Physics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green