
This paper discusses a new algorithm for generating the Pareto frontier for bi-level multi-objective rough nonlinear programming problem (BL-MRNPP). In this algorithm, the uncertainty exists in constraints which are modeled as a rough set. Initially, BL-MRNPP is transformed into four deterministic models. The weighted method and the Karush-Kuhn-Tucker optimality condition are combined to obtain the Pareto front of each model. The nature of the problem solutions is characterized according to newly proposed definitions. The location of efficient solutions depending on the lower/upper approximation set is discussed. The aim of the proposed solution procedure for the BL-MRNPP is to avoid solving four problems. A numerical example is solved to indicate the applicability of the proposed algorithm.
Multi-objective programming, Rough set, Bi-level programming, KKT optimality, TA1-2040, Engineering (General). Civil engineering (General)
Multi-objective programming, Rough set, Bi-level programming, KKT optimality, TA1-2040, Engineering (General). Civil engineering (General)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 38 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
