Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DROPS - Dagstuhl Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC 0
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Distance Estimation Between Unknown Matrices Using Sublinear Projections on Hamming Cube

Authors: Bishnu, Arijit; Ghosh, Arijit; Mishra, Gopinath;

Distance Estimation Between Unknown Matrices Using Sublinear Projections on Hamming Cube

Abstract

Using geometric techniques like projection and dimensionality reduction, we show that there exists a randomized sub-linear time algorithm that can estimate the Hamming distance between two matrices. Consider two matrices ${\bf A}$ and ${\bf B}$ of size $n \times n$ whose dimensions are known to the algorithm but the entries are not. The entries of the matrix are real numbers. The access to any matrix is through an oracle that computes the projection of a row (or a column) of the matrix on a vector in $\{0,1\}^n$. We call this query oracle to be an {\sc Inner Product} oracle (shortened as {\sc IP}). We show that our algorithm returns a $(1\pm ��)$ approximation to ${\bf D}_{\bf M} ({\bf A},{\bf B})$ with high probability by making ${\cal O}\left(\frac{n}{\sqrt{{\bf D}_{\bf M} ({\bf A},{\bf B})}}\mbox{poly}\left(\log n, \frac{1}��\right)\right)$ oracle queries, where ${\bf D}_{\bf M} ({\bf A},{\bf B})$ denotes the Hamming distance (the number of corresponding entries in which ${\bf A}$ and ${\bf B}$ differ) between two matrices ${\bf A}$ and ${\bf B}$ of size $n \times n$. We also show a matching lower bound on the number of such {\sc IP} queries needed. Though our main result is on estimating ${\bf D}_{\bf M} ({\bf A},{\bf B})$ using {\sc IP}, we also compare our results with other query models.

30 pages. Accepted in RANDOM'21

Keywords

FOS: Computer and information sciences, Property testing, Dimensionality reduction, 004, Distance estimation, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Sub-linear algorithms, ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green