Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Modular Algorithm for Non-Stationary Online Convex-Concave Optimization

Authors: Meng, Qing-xin; Lei, Xia; Liu, Jian-wei;

A Modular Algorithm for Non-Stationary Online Convex-Concave Optimization

Abstract

This paper investigates the problem of Online Convex-Concave Optimization, which extends Online Convex Optimization to two-player time-varying convex-concave games. The goal is to minimize the dynamic duality gap (D-DGap), a critical performance measure that evaluates players' strategies against arbitrary comparator sequences. Existing algorithms fail to deliver optimal performance, particularly in stationary or predictable environments. To address this, we propose a novel modular algorithm with three core components: an Adaptive Module that dynamically adjusts to varying levels of non-stationarity, a Multi-Predictor Aggregator that identifies the best predictor among multiple candidates, and an Integration Module that effectively combines their strengths. Our algorithm achieves a minimax optimal D-DGap upper bound, up to a logarithmic factor, while also ensuring prediction error-driven D-DGap bounds. The modular design allows for the seamless replacement of components that regulate adaptability to dynamic environments, as well as the incorporation of components that integrate ``side knowledge'' from multiple predictors. Empirical results further demonstrate the effectiveness and adaptability of the proposed method.

Earlier Version: https://openreview.net/forum?id=WIerHtNyKr

Keywords

Machine Learning, FOS: Computer and information sciences, Optimization and Control (math.OC), Optimization and Control, FOS: Mathematics, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green