
arXiv: 2303.17889
handle: 20.500.11850/644726
In this paper, we consider a Model Predictive Control (MPC) problem of a continuous-time linear time-invariant system subject to continuous-time path constraints on the states and the inputs. By leveraging the concept of differential flatness, we can replace the differential equations governing the system with linear mapping between the states, inputs, and flat outputs (including their derivatives). The flat outputs are then parameterized by piecewise polynomials, and the model predictive control problem can be equivalently transformed into a Semi-Definite Programming (SDP) problem via Sum-of-Squares (SOS), ensuring constraint satisfaction at every continuous-time interval. We further note that the SDP problem contains a large number of small-size semi-definite matrices as optimization variables. To address this, we develop a Primal-Dual Hybrid Gradient (PDHG) algorithm that can be efficiently parallelized to speed up the optimization procedure. Simulation results on a quadruple-tank process demonstrate that our formulation can guarantee strict constraint satisfaction, while the standard MPC controller based on the discretized system may violate the constraint inside a sampling period. Moreover, the computational speed superiority of our proposed algorithm is collaborated by numerical simulation.
Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
