
pmid: 40157965
Wind is a renewable, sustainable, and clean source of energy. This has led to wind gaining a lot of attention in recent decades as a reliable alternative to fossil fuels. However, wind speed fluctuations complicate its integration with power grids. To tackle this issue, this paper proposes a new wind speed prediction model that combines four techniques: Discrete Wavelet Transform, which smooths the wind speed signal; Mutual Information, which selects the most informative part of the wind speed time series; Coot Optimization Algorithm for optimal feature selection; and Bidirectional Long Short-Term Memory for capturing complex patterns. To evaluate the efficiency of the proposed model, its performance was measured using error metrics such as mean squared error, mean absolute error, mean absolute percentage error, coefficient of determination ([Formula: see text]), and median absolute error. The proposed model was examined using two different wind speed datasets and achieved high prediction accuracy. Additionally, 14 different benchmark models were created, and their prediction results were compared with those of the proposed model. A comparison between the results of the proposed model and benchmark models demonstrated the superiority of the proposed model.
Science, Q, R, Medicine, Article
Science, Q, R, Medicine, Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
