Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital library (rep...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physical Mesomechanics
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mapping of Two-Dimensional Contact Problems on a Problem with a One-Dimensional Parametrization

Authors: Popov, Valentin L.;

Mapping of Two-Dimensional Contact Problems on a Problem with a One-Dimensional Parametrization

Abstract

We discuss a possible generalization of the ideas of the method of dimensionality reduction (MDR) for the mapping of two-dimensional contact problems (line contacts). The conventional formulation of the MDR is based on the existence and uniqueness of a relation between indentation depth and contact radius. In two-dimensional contact problems, the indentation depth is not defined unambiguously, thus another parametrization is needed. We show here that the Mossakovskii-Jäger procedure of representing a contact as a series of incremental indentations by flat-ended indenters can be carried out in two-dimensions as well. The only available parameter of this process is, however, the normal load (instead of indentation depth as in the case of three-dimensional contacts). Using this idea, a complete solution is obtained for arbitrary symmetric two-dimensional contacts with a compact contact area. The solution includes both the relations of force and half-width of the contact and the stress distribution in the contact area. The procedure is generalized for adhesive contacts and is illustrated by solutions of a series of contact problems.

Keywords

TWO-DIMENSIONAL CONTACT, двухмерные контактные задачи, адгезионные контакты, принцип суперпозиции, MOSSAKOVSKII-JäGER SUPERPOSITION PRINCIPLE, METHOD OF DIMENSIONALITY REDUCTION, ADHESION, ДВУМЕРНЫЕ ЗАДАЧИ МЕХАНИКИ КОНТАКТНОГО ВЗАИМОДЕЙСТВИЯ, АДГЕЗИЯ ', адгезия, МЕТОД РЕДУКЦИИ РАЗМЕРНОСТИ, линейные контакты, LINE CONTACT, ПРИНЦИП СУПЕРПОЗИЦИИ MOSSAKOVSKII-JäGER

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Green