
Summary: The relation between the entropy of a discrete random variable and the minimum attainable probability of error made in guessing its value is examined. While Fano's inequality provides a tight lower bound on the error probability in terms of the entropy, we derive a converse result -- a tight upper bound on the minimal error probability in terms of the entropy. Both bounds are sharp, and can draw a relation, as well, between the error probability for the maximum a posteriori (MAP) rule, and the conditional entropy (equivocation), which is a useful uncertainty measure in several applications. Combining this relation and the classical channel coding theorem, we present a channel coding theorem for the equivocation which, unlike the channel coding theorem for error probability, is meaningful at all rates. This theorem is proved directly for DMC's, and from this proof it is further concluded that for \(R\geq C\) the equivocation achieves its minimal value of \(R-C\) at the rate of \(n^{1/2}\) where \(n\) is the block length.
conditional entropy, Measures of information, entropy, predictability, upper bound, channel coding theorem, discrete memoryless channels, Error probability in coding theory, entropy, equivocation, minimal error probability
conditional entropy, Measures of information, entropy, predictability, upper bound, channel coding theorem, discrete memoryless channels, Error probability in coding theory, entropy, equivocation, minimal error probability
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 137 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
