
arXiv: 2409.13671
Predicting the emergence of multiple chronic conditions (MCC) is crucial for early intervention and personalized healthcare, as MCC significantly impacts patient outcomes and healthcare costs. Graph neural networks (GNNs) are effective methods for modeling complex graph data, such as those found in MCC. However, a significant challenge with GNNs is their reliance on an existing graph structure, which is not readily available for MCC. To address this challenge, we propose a novel generative framework for GNNs that constructs a representative underlying graph structure by utilizing the distribution of the data to enhance predictive analytics for MCC. Our framework employs a graph variational autoencoder (GVAE) to capture the complex relationships in patient data. This allows for a comprehensive understanding of individual health trajectories and facilitates the creation of diverse patient stochastic similarity graphs while preserving the original feature set. These variations of patient stochastic similarity graphs, generated from the GVAE decoder, are then processed by a GNN using a novel Laplacian regularization technique to refine the graph structure over time and improves the prediction accuracy of MCC. A contextual Bandit is designed to evaluate the stochastically generated graphs and identify the best-performing graph for the GNN model iteratively until model convergence. We validate the performance of the proposed contextual Bandit algorithm against $\varepsilon$-Greedy and multi-armed Bandit algorithms on a large cohort (n = 1,592) of patients with MCC. These advancements highlight the potential of the proposed approach to transform predictive healthcare analytics, enabling a more personalized and proactive approach to MCC management.
This work has been accepted for publication in the IEEE Journal of Biomedical and Health Informatics
FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
