Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Centralised, and distributed power allocation algorithms in cooperative networks

Authors: J. Adeane; M.R.D. Rodrigues; I.J. Wassell;

Centralised, and distributed power allocation algorithms in cooperative networks

Abstract

Cooperation among network nodes provides transmit diversity in cases where wireless transmitters, due to size and power limitation, cannot support multiple antennas. We consider cooperation among M nodes, where each node achieves space diversity by using other nodes' antennas as relays. Cooperation among nodes has been shown to achieve impressive bit error rate (BER) gains as compared to a non-cooperative system while maintaining the same information rate, transmit power, and bandwidth [ A. Sendonaris et al. (2003), J. N. Laneman et al. (2004), T. E. Hunter et al.]. Firstly, this paper formulates an optimum, centralised power allocation scheme appropriate for a cooperative network that employs transparent relaying. It will be shown that the proposed allocation scheme significantly outperforms the equal power allocation scheme, e.g., by up to 5 dB for a 3-user case at a bit error rate of 10/sup -3/. Secondly, this paper proposes a distributed power allocation scheme where each node independently calculates its power allocation factors, and it will be shown that it converges to the optimum allocation yielded by the centralised approach. Finally, this paper presents a distributed power allocation algorithm to optimise the BER performance of cooperative networks only with partial knowledge of the channel state information (CSI) of the non-adjacent nodes.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!