Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research Collection
Conference object . 2019
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Unsupervised learning of API aliasing specifications

Authors: Eberhardt, Jan; Steffen, Samuel; Raychev, Veselin; Vechev, Martin;

Unsupervised learning of API aliasing specifications

Abstract

Real world applications make heavy use of powerful libraries and frameworks, posing a significant challenge for static analysis as the library implementation may be very complex or unavailable. Thus, obtaining specifications that summarize the behaviors of the library is important as it enables static analyzers to precisely track the effects of APIs on the client program, without requiring the actual API implementation. In this work, we propose a novel method for discovering aliasing specifications of APIs by learning from a large dataset of programs. Unlike prior work, our method does not require manual annotation, access to the library's source code or ability to run its APIs. Instead, it learns specifications in a fully unsupervised manner, by statically observing usages of APIs in the dataset. The core idea is to learn a probabilistic model of interactions between API methods and aliasing objects, enabling identification of additional likely aliasing relations, and to then infer aliasing specifications of APIs that explain these relations. The learned specifications are then used to augment an API-aware points-to analysis. We implemented our approach in a tool called USpec and used it to automatically learn aliasing specifications from millions of source code files. USpec learned over 2000 specifications of various Java and Python APIs, in the process improving the results of the points-to analysis and its clients.

Related Organizations
Keywords

Big code; unsupervised machine learning; Specification; pointer analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!