Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DROPS - Dagstuhl Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Near-Linear Time and Fixed-Parameter Tractable Algorithms for Tensor Decompositions

Authors: Mahankali, Arvind V.; Woodruff, David P.; Zhang, Ziyu;

Near-Linear Time and Fixed-Parameter Tractable Algorithms for Tensor Decompositions

Abstract

We study low rank approximation of tensors, focusing on the tensor train and Tucker decompositions, as well as approximations with tree tensor networks and more general tensor networks. For tensor train decomposition, we give a bicriteria $(1 + \eps)$-approximation algorithm with a small bicriteria rank and $O(q \cdot \nnz(A))$ running time, up to lower order terms, which improves over the additive error algorithm of \cite{huber2017randomized}. We also show how to convert the algorithm of \cite{huber2017randomized} into a relative error algorithm, but their algorithm necessarily has a running time of $O(qr^2 \cdot \nnz(A)) + n \cdot \poly(qk/\eps)$ when converted to a $(1 + \eps)$-approximation algorithm with bicriteria rank $r$. To the best of our knowledge, our work is the first to achieve polynomial time relative error approximation for tensor train decomposition. Our key technique is a method for obtaining subspace embeddings with a number of rows polynomial in $q$ for a matrix which is the flattening of a tensor train of $q$ tensors. We extend our algorithm to tree tensor networks. In addition, we extend our algorithm to tensor networks with arbitrary graphs (which we refer to as general tensor networks), by using a result of \cite{ms08_simulating_quantum_tensor_contraction} and showing that a general tensor network of rank $k$ can be contracted to a binary tree network of rank $k^{O(°(G)\tw(G))}$, allowing us to reduce to the case of tree tensor networks. Finally, we give new fixed-parameter tractable algorithms for the tensor train, Tucker, and CP decompositions, which are simpler than those of \cite{swz19_tensor_low_rank} since they do not make use of polynomial system solvers. Our technique of Gaussian subspace embeddings with exactly $k$ rows (and thus exponentially small success probability) may be of independent interest.

Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Tensor decomposition, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), 004, 510, Low rank approximation, Sketching algorithms, Machine Learning (cs.LG), ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green