Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Exploration &...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Exploration & Exploitation
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Exploration & Exploitation
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Real-time prediction of multivariate ROP (rate of penetration) based on machine learning regression algorithms: Algorithm comparison, model evaluation and parameter analysis

Authors: Wei Liu; Jiasheng Fu; Chunjing Tang; Xinyu Huang; Ting Sun;

Real-time prediction of multivariate ROP (rate of penetration) based on machine learning regression algorithms: Algorithm comparison, model evaluation and parameter analysis

Abstract

ROP (Rate of Penetration) is a comprehensive indicator of the rock drilling process and how efficiently predicting drilling rates is important to optimize resource allocation, reduce drilling costs and manage drilling hazards. However, the traditional model is difficult to consider the multiple factors, which makes the prediction accuracy difficult to meet the real drilling requirements. In order to provide efficient, accurate and comprehensive information for drilling operation decision-making, this study evaluated the applicability of four typical regression algorithms based on machine learning for predicting pore pressure in Troll West field, namely SVR (Support Vector Regression), Linear regression, Regression Tree and Gradient Boosting regression. These methods allow more parameters input. By comparing the prediction results of these typical regression algorithms based on R2(R-Square), explained variance, mean absolute error, mean squared error, median absolute error and other performance indicators, it was found that each method predicted different results, among which Gradient Boosting regression has the best results, their prediction accuracy is high and the error is very low. The prediction accuracy of these methods is positively correlated with the proportion of the training data set. With the increase of logging features, the prediction accuracy is gradually improved. In the prediction of adjacent wells, the ROP prediction methods can achieve a certain prediction effect, which shows that this method is suitable for ROP prediction in Troll West field.

Related Organizations
Keywords

TK1001-1841, Production of electric energy or power. Powerplants. Central stations, TJ807-830, Renewable energy sources

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
gold