
arXiv: 2008.06403
In this paper we introduce a variant of the Syndrome Decoding Problem (SDP), that we call Restricted SDP (R-SDP), in which the entries of the searched vector are defined over a subset of the underlying finite field. We prove the NP-completeness of R-SDP, via a reduction from the classical SDP, and describe algorithms which solve such new problem. We study the properties of random codes under this new decoding perspective, in the fashion of traditional coding theory results, and assess the complexity of solving a random R-SDP instance. As a concrete application, we describe how Zero-Knowledge Identification (ZK-ID) schemes based on SDP can be tweaked to rely on R-SDP, and show that this leads to compact public keys as well as significantly reduced communication costs. Thus, these schemes offer an improved basis for the construction of code-based digital signature schemes derived from identification schemes through the well-know Fiat-Shamir transformation.
FOS: Computer and information sciences, Computer Science - Cryptography and Security, Computer Science - Information Theory, Information Theory (cs.IT), Algebraic coding theory; cryptography (number-theoretic aspects), decoding problems, restricted errors, Cryptography, coding theory, bounds, Cryptography and Security (cs.CR), Linear codes (general theory)
FOS: Computer and information sciences, Computer Science - Cryptography and Security, Computer Science - Information Theory, Information Theory (cs.IT), Algebraic coding theory; cryptography (number-theoretic aspects), decoding problems, restricted errors, Cryptography, coding theory, bounds, Cryptography and Security (cs.CR), Linear codes (general theory)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
