
Abstract We consider the risk conscious solution of planning problems with uncertainties in the problem data. The problems are formulated as two-stage stochastic mixed-integer models in which some of the decisions (first-stage) have to be made under uncertainty and the remaining decisions (second-stage) can be made after the realization of the uncertain parameters. The uncertain model parameters are represented by a finite set of scenarios. The risk conscious optimization problem under uncertainty is solved by a stage decomposition approach using a multi-objective evolutionary algorithm which optimizes the expected scenario costs and the risk criterion with respect to the first-stage decisions. The second-stage scenario decisions are handled by mathematical programming. Results from numerical experiments for two real-world problems are shown.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
