
Small to medium sized transportation and logistics companies are usually constrained by limited computing and IT professional resources on implementing an efficient parallel metaheuristic algorithm for planning or management solutions. In this paper we extend the standard meta-description for genetic algorithms (GA) with a simple non-trivial parallel implementation. Our parallel GA framework is chiefly concerned with the development of a straightforward way for engineers to modify existing genetic algorithm implementations for real transportation and logistics problems to make use of commonly available hardware resources without completely reworking complex, useful and usable codes. The framework presented at its parallel base is a modification of the primitive parallelization concept, but if implemented as described it may be gradually extended to fit the qualities of any underlying problem better (via the adaptation of the merging and communications functions).We present our framework and computational results for a classical transportation related combinatorial optimization problem - the traveling salesman problem with a standard sequential genetic algorithm implementation. Our empirical analysis shows that this simple extension can lead to considerable solution improvements. We also tested our assumptions that the framework is easily implemented by an engineer not initially familiar with genetic algorithms to implement the framework for another minimum multiprocessor scheduling problem. These case studies verify that our framework is better than primitive parallelization because it gives empirically better results under equitable conditions. It also outperforms fine grained parallelization as it is easier and faster to implement.
Parallel metaheuristics, genetic algorithm, logistics management, Electrical engineering. Electronics. Nuclear engineering, transportation planning, TK1-9971
Parallel metaheuristics, genetic algorithm, logistics management, Electrical engineering. Electronics. Nuclear engineering, transportation planning, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
