Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Archive o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Information and Telecommunication Sciences
Article . 2017 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

OPTICAL FREQUENCY TRANSDUCER BASED ON DUAL-GATE MOSFET WITH AN ACTIVE INDUCTIVE ELEMENT

Оптичний частотний перетворювач на основі двозатворних МOН-транзисторів з активним індуктивним елементом
Authors: Osadchuk, Alexandr; Osadchuk, Vladimir; Seletska, Olena; Krylik, Lyudmila;

OPTICAL FREQUENCY TRANSDUCER BASED ON DUAL-GATE MOSFET WITH AN ACTIVE INDUCTIVE ELEMENT

Abstract

Background. A perspective trend in the development of optical radiation transducers is using of dependencies of reactive properties of semiconductor transistor structures with negative resistance on optical radiation effect and creation of frequency optical radiation transducers on the basis of these properties. Application of optical-frequency transformation enhances noisestability, accuracy and enables to expand a measuring range, to obtain outputs higher than amplitude ones and to improve metrological performances of the transducers. Using frequency as an informative parameter allows excluding the analog-to-digital transducers during information processing, and reducing the cost of monitoring and control systems. The principle of “optical powerfrequency” transformation can be implemented using semiconductor structure containing self-sustained oscillator and photoresistor as a photosensitive element. Active inductance resolves the problem of low quality factor inherent in the passive inductor. Furthermore, it overcomes compatibility issue of passive inductor's size with the integrated circuit's sizes and allowscompletely making transducer as an integrated circuit. So, it is necessary to construct a mathematical model of the optical frequency transducer to analyze its properties and to obtain the dependencies of active and reactive components of the impedance of the semiconductor structure, the equation of sensitivity and the transfer function.Objective. The aim of the paper is to determine the transfer function and equation of sensitivity for optical transducer with an active inductive element by solving Kirchhoff’s system of equations composed for equivalent circuit of the transducer.Methods. The determination of the transistor structure impedance was made by solving the Kirchhoff’s system of equations, composed for equivalent circuit of frequency optical transducer. The characteristics describing dependencies ofreactive and active components of the oscillator’s impedance on optical power were obtained by computer simulation using the MATLAB numerical computing environment.Results. The mathematical model for description of the properties of frequency optical transducer with an active inductive element was developed. The transform function and relative sensitivity analytical equations were estimated to describe the action of transducer. The values of relative sensitivity are equal to 2 – 11.5 kHz/ μWt/cm2. Accuracy of developed mathematical model is ±5%.Conclusions. The optical transducer with an active inductive element has a high sensitivity in the range of low values of optical power. It makes possible to measure even low optical signals. Proposed model describes the dependence of the impedance of the transistor structure – which is basic for the transducer – on power of optical radiation.Keywords: optical transducers; frequency transducers; negative resistance; photoresistor.

Keywords

оптичні перетворювачі, отрицательный сопротивление, частотные преобразователи, optical transducers; frequency transducers; negative resistance; photoresistor., оптические преобразователи, frequency transducers, negative resistance, від’ємний опір, фоторезистор, optical transducers, photoresistor, частотні перетворювачі

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold