Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neural Computing and...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neural Computing and Applications
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
https://dx.doi.org/10.60692/de...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/h7...
Other literature type . 2023
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MOCOVIDOA: a novel multi-objective coronavirus disease optimization algorithm for solving multi-objective optimization problems

MOCOVIDOA: خوارزمية جديدة متعددة الأهداف لتحسين مرض فيروس كورونا لحل مشاكل التحسين متعددة الأهداف
Authors: Asmaa M. Khalid; Hanaa M. Hamza; Seyedali Mirjalili; Khalid M. Hosny;

MOCOVIDOA: a novel multi-objective coronavirus disease optimization algorithm for solving multi-objective optimization problems

Abstract

AbstractA novel multi-objective Coronavirus disease optimization algorithm (MOCOVIDOA) is presented to solve global optimization problems with up to three objective functions. This algorithm used an archive to store non-dominated POSs during the optimization process. Then, a roulette wheel selection mechanism selects the effective archived solutions by simulating the frameshifting technique Coronavirus particles use for replication. We evaluated the efficiency by solving twenty-seven multi-objective (21 benchmarks & 6 real-world engineering design) problems, where the results are compared against five common multi-objective metaheuristics. The comparison uses six evaluation metrics, including IGD, GD, MS, SP, HV, and deltap($$\Delta \mathrm{P}$$ΔP). The obtained results and the Wilcoxon rank-sum test show the superiority of this novel algorithm over the existing algorithms and reveal its applicability in solving multi-objective problems.

Keywords

Optimization, Global Optimization, Multi-Objective Optimization, Optimization Applications, Mathematical optimization, Metaheuristic, Computer science, Algorithm, Optimization algorithm, Engineering, Computational Theory and Mathematics, Artificial Intelligence, Control and Systems Engineering, Particle Swarm Optimization, Computer Science, Physical Sciences, FOS: Mathematics, Original Article, Swarm Intelligence Optimization Algorithms, State-of-the-Art in Process Optimization under Uncertainty, Multiobjective Optimization in Evolutionary Algorithms, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
hybrid
Related to Research communities