
arXiv: 2111.14452
Decoding sequences that stem from multiple transmissions of a codeword over an insertion, deletion, and substitution channel is a critical component of efficient deoxyribonucleic acid (DNA) data storage systems. In this paper, we consider a concatenated coding scheme with an outer nonbinary low-density parity-check code or a polar code and either an inner convolutional code or a time-varying block code. We propose two novel decoding algorithms for inference from multiple received sequences, both combining the inner code and channel to a joint hidden Markov model to infer symbolwise a posteriori probabilities (APPs). The first decoder computes the exact APPs by jointly decoding the received sequences, whereas the second decoder approximates the APPs by combining the results of separately decoded received sequences and has a complexity that is linear with the number of sequences. Using the proposed algorithms, we evaluate the performance of decoding multiple received sequences by means of achievable information rates and Monte-Carlo simulations. We show significant performance gains compared to a single received sequence. In addition, we succeed in improving the performance of the aforementioned coding scheme by optimizing both the inner and outer codes.
This paper has been accepted for publication in the IEEE Transactions on Information Theory
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
